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NUMERICAL SOLUTION OF A TWO-DIMENSIONAL PROBLEM OF THE TRANSIENT 

HYDRODYNAMICS OF A COMPRESSIBLE NON-NEWTONIAN FLUID 

S. D. Tseitlin UDC 532.135 

A solution is presented for a transient two-dimensional problem of the hydrody- 
namics of a compressible non-Newtonian fluid connected with the propagation and 
damping of shock waves in a well. 

The physical processes connected with well drilling have been studied in increasing de- 
tail in recent times, a fact related to the seriousness of the consequences of emergency 
situations at oil and gas extraction sites. Theoretical study of the hydrodynamics of wells 
is complicated by the need to solve problems for non-Newtonian fluids -- which includes most 
drilling fluids. Here, most of the work that has been done has examined unidimensional and 
quasi-unidimensional hydrodynamic problems, with investigators neglecting or averaging two- 
dimensional and nonlinear effects [i, 2]. 

Examined below is a two-dimensional transient problem of the hydrodynamics of a com- 
pressible non-Newtonian fluid with allowance for several nonlinear phenomena which might ex- 
ert a marked effect in the generation and propagation of shock waves in long channels. We 
chose for the form of the rheological equation a relation describing shear stress as an 
exponential function of shear rate, which is a good approximation for most drilling fluids. 

Given this model, we may study a whole range of problems of dynamics connected with the 
opening up of beds with pressure anomalies, the closing of pipe connections, start-up of 
pumps, lowering and raising of drilling equipment, etc. Here, we examine the first of these 
problems and solve it by the method of fractional steps [3] on an R-1040 computer. 

The unsteady motion of a non-Newtonian fluid is described by the following dynamic equa- 
tion [4, 5]: 

av 
p--~- + ~vv.v = - - v P  + d i v e +  Og. (1) 

In the'case of a compressible fluid, apart from the shear stresses, the viscous stress tensor 
should also account for linear strain [4], i.e., 
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u ?, 2 
= q- --~- ~1 (divv) 8 . . . .  (2) 

We assume that for the fluid in question there_is assigned a nonlinear rheological equa- 
tion of state which provides for agreement between �9 and the tension tensor (D). Here, r' = 
r, since the liquid was assumed to have been incompressible (div v -- 0) in deriving the rheo- 
logical equation 

: g (D), 

where D : 1 (V v --[-V vT),. The specific form of this relation for the so-called generalized 
2 

non-Newtonian fluid [4] is expressed in terms of the second principal invariant of the tensor 

~" = 2~1 (S)/), (3) 

where S = 2tr(D2), here tr is the trace of the tensor. 

The value of ~ is assumed constant for a Newtonian fluid, and Eq. (i) converts to the 
Navier--Stokes equation. Substitution of Eq. (2) into (i) with allowance for (3) leads to 
the generalized form of the Navier--Stokes equation [4, 5]: 

p--~-+PVV.V=--vP+pg+TI(S ) V2V' -+  - graddivv  +2L)grad~ l (S  ) -  grad~(S)divv.  
(4)  

E q u a t i o n  (4) w i l l  be i n t e g r a t e d  w i t h  a power law of  change i n  v i s c o s i t y  [4 ] ,  i . e . ,  where 

TI (S) = k S  ~ ' - ~ / 2 .  (5) 

We should note that drilling fluids are described well by relations of the type (5) for 
n< i. To close the system, together with Eqs. (4) and (5), we should examine the equation of 
continuity for a compressible fluid [4]: 

0P 
-- 0--t = pc2div v, (6) 

where c = /kh/0. 

Let us now examine the following problem. Let a viscous fluid with a known rheology 
enter the bottom of a vertical tube (Fig. i) of length L with an annular cross section of 
radii RI and R2 (in particular, the internal radius can be ~ = 0). A steady flow is estab- 
lished in the tube with a profile which depends on the type of rheological law, the geome- 
try of the channel, and the mass flow rate [I]. We will study the propagation of dynamic 
perturbations which arise with an abrupt change in the mass flow rate or the pressure at the 
ends of the channel in the case of the movement of a non-Newtonian fluid in the channel. 

Let us choose a cylindrical system of coordinates, (z, ~, r), with the z axis coinciding 
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with the axis of the channel and the origin locazed4on: tha~bottom cross section. Considering 

that the velocity v has only a z-th component v z = v(r, z), we may specify the form of the 
tension tensor and S, as well as the form of Eq. (3). In a cylindrical coordinate system, 
the tension tensor has the form 

thus in our case 

D __ 

aUz 
az 

1 (av~ + av~) 
T - o f ~  az / 

~, az -}- r 09 

1 ( Ov~_ 0o~ I 
2 \ Or + Oz / 

Ovr 
Or 

1 1 Ov~ 
-2- r a9 

2 (Ov~ --g-+---- 
1 { 1 Ov~ 
2 ~, r Oq~ 

1 ( Ov~ 
r \ O w  + 

+.aV~or --~-) 

1 Ovz ) 
r 09 

+ OV~or --  V~r ) 

S=2tr(D~)=2kOz] \Or ] " 

The system of equations (4)-(6) takes the form 

av av aP + pg + n + + ~ +-- +---- 
P--~ + pv O~ -- Oz 3 Oz 2 ~r z r 3 Oz Oz Or Or 

O P c)v 
__ __ C2p- , 
Ot Oz 

( ( L\ or ] 7 7  kh 

(7) 

(8) 

(9) 

The values of k and n are considered known, and are taken from an empirical flow curve. 

The channel is assumed to be isothermal. Flow is laminar in character everywhere in the 
channel. In the case of steady flow, most of the terms of Eqs. (9) vanish, and the solution 
can be written in the form of a quadrature [i]. This solution will be taken for the initial 
distribution of the parameters in the channel (t < 0). The boundary conditions may differ, 

depending on the type of flow perturbation. 

In the present work, we investigated the dynamics of the opening of a bed with a pres- 
sure anomaly, and chose the following boundary conditions. On the wells we assigned the 
condition of adhesion v(r = ~ ) = v(r = R2) = 0, ~P/~r = 0. At the channel outlet we assigned 
a constant pressure P(z = L) = const = 1 atm. The boundary condition at the bottom of the 
channel (z = 0) was assigned on the basis of the following assumptions. Let a gas bed of 
infinite thickness be opened at the moment of time t = 0 with a large increase in pressure 
over Pb(Z = 0, t < 0). In emergency situations, the magnitude of the anomalous pressure in 
the bed Pk = Pi--Pg L may reach several tens or even hundreds of atmospheres. A gas flow Q(t) 
begins to enter the channel at t > 0, the magnitude of the flow being determined by the poros- 
ity.and permeability of the reservoir (m and kp, respectively), the viscosity of the gas p, 
and the difference between the anomalous pressure of the bed and the pressure at the bottom 
of the borehole (Pi--Pb(Z = 0, t)). From the theory of transient unidimensional filtration 
and with allowance for well imperfection in the assumption of quasistationariness, we may 
obtain the following to express the dependence of this flow on the above-noted parameters [2] 

where  ~ ---- (kpP~)/(m~t) 

2nk~R~ / R~ \ 
(P i - -  Pb (t))exp k ) Q(t) - ~ 4• ' 

i s  t h e  c o e f f i c i e n t  o f  p i e z o c o n d u c t i v i t y .  

(10) 
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Analysis of the steady-state velocity (the value of u) for characteristic types of 
reservoirs shows that the process of establishing steady-state conditions takes place con- 
siderably more rapidly than does the change in pressure at the bottom of the borehole Pb(t), 
i.e., the condition of quasistationariness, assumed in obtaining Eq. (i0), is well satisfied 
at channel lengths L~50 m. Since the volume of the gas entering the channel during this 
process is much less than the total volume of fluid in the channel, we can ignore the effect 
of the gas layer at the bottom of the well on the overall pattern of flow dynamics. 

Thus, the boundary condition in the bottom section of the channel is assigned in the 
form of a dependence of velocity v(z = 0, t) or flow rate on pressure obtained from Eq. (I0). 
The initial velocity profile (v(r, z) at t~O) corresponds to steady-state flow of the fluid 
in a channel of the given configuration. At the channel outlet we assign the condition of 

av 
the free surface -- (z=L)-----0:. 

Oz 

It is usual in studying shock waves in a fluid in tubes to ignore the nonlinear terms 

O__V__V and 0 ( O ZV ) v Oz -~z ~ , which are indeed of lesser magnitude than the other terms in Eq. (9). 

However, since the channel length reaches several kilometers, these phenomena may have a 
marked effect on wave attenuation along the channel. 

Having chosen characteristic values of time to, length Zo, viscosity no, and pressure 
Po and converting to dimensionless quantities, we can rewrite system (9) in the form 

Ov _ v - -  - -  § -5 rq 
Ot Oz Fr ~-e 3 Oz ~1 ---- --Er-- , �9 r Or Oz 

where 

Fr = - - - -  

aP ov 
- Erp - -  ,, 

at Oz 

= + 2 (Z l )  

Vo " R e -  l ~ 1 7 6  E r - -  Po  cZP 
log  Xlo pv~ ; E r p -  ~ Po 

For the numerical algorithm, we chose the method of fractional steps -- specifically, 
the Douglas--Rachford scheme [3]. Let us write Eq. (i0) in vector form 

OX 
= A X + Q ,  

at 

where 

X =  P , 

Q =  0 ' 

A ~  

--v- -/- rl -F -- -- r~] -- Er 
T T f  Oz 

- -Erp  O 0 
az 

We will represent the operator A in this equation in the form of the sum A = A z + Ar, 
where 

AS 

0+410( ) 
- -  v dz 3 -  Re az- rl --Er 

a 0 --Erp az 

0 

Oz 
. 

( (0)) 1 1 O r~l 0 
A~---- Re r Or ~ 

0 0 
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Then, having chosen a grid with spatial steps hr, h z and the time step r (~ = h r • h z ~ z), 
we approximate the differential operators with the finite-difference operators (Ar-~Ar, 
AzNAz), so that we obtain the following algebraic system: 

m+YL_ 
X 2 __ X m m+ ~___ 

- TLx  ~ + f L x  m, 
q~ 

x m +  1 - -  X 
m+ ~__ 

2 
= Z ~ x m +  ' _ X ~ x  m 

(12) 

(the superscript m indicates the number of the time layer (t = mz)). 

The Douglas--Rachford scheme is known to stable [3] and has an approximation in the case 
of linearity of A r and A z O(lhl = + z). These operators are nonlinear in our case, although 
the numerical experiment showed that we could expect the same order of accuracy. 

Each of the above operators, by virtue of their nonlinearity, depend on the sought func- 
tions (P and v). In the numerical solution of system (12), this dependence was accounted for 
by the usual method of displacing the time by T/2. Such an approach imposes additional con- 
ditions on the selection of a time step since it introduces an additional error into the solu- 
tion, and is determined experimentally. 

The system of algebraic equations (12) may be reduced to the following form: 

m+ l..i_ m+ :- i-  m+ :.2- 
X A m 2 m X ~ - - E X ~  "m m A1 i_l i  2 --( 2 -~ E) Xii -} ' -As r = - - x A z X i i ,  

__1 Xm+l re+a_ m + !  m+ ] s 
-- (B 2 ~ -[- E) X ~  +' -t- B a ~ X~$1 = - - E X  t, -~- -}- T~z~mXmq, (13) DI il--I 1 

...... ~+ l_j_ ~+ 1 m+ :--- 
w h e r e  A~, A m2, Aa,m BI 2 , B2 T, Ba 2 are square matrices (of the second rank) obtained in 
approximating the initial "equations by finite-difference equations; E is the unit matrix. 

System of equations (13), with the corresponding boundary and initial conditions, was 
solved by means of a matrix trial run [3]. We selected an 8 • i00 grid with a time step ~ = 
3.10 -3 sec. Here, 1 sec of real time required about i0 min of machine computation on the 

R-1040 computer. 

Let us examine a typical example of transient flow of a drilling fluid in the annular 
space (between the casing and tubing of the drill pipe) (Fig. i). The radii of the casing 
and tubing was chosen as RI = 0.0735 m and R2 = 0.1145 m. The channel length was L = 500 m. 
The rheological characteristic of the fluid was assigned in the form of a power law with the 
indices n = 0.5; k = 0.22, i.e., r = 0.22.S ~ The top end of the drill pipe was assumed 
to be open, and at its surface we assigned the condition P(z = L) = Po = 105 N/m2. We 
assigned a condition of adhesion on the channel walls, i.e., v(r = ~ ) = v(r = R2) = 0. At 
t < 0, we assumed a non-Newtonian fluid flowed in the channel with a velocity and pressure 
distribution corresponding to the steady state [I]. 

At t~0, an anomalous-pressure bed was opened and there was an associated abrupt in- 
crease in pressure and flow rate at the lower end of the pipe (z = 0). The front and ampli- 
tude of the increase in pressure were assumed to be connected by Eq. (i0). Calculations were 
performed for Pn = 107 N/m2 + 0gL; ~=i0 -~ N'sec/m2; kp = (0.1-1)D; m = 0.2; Qo = 25"10 -5 

m S/sec. 

Let us examine and discuss certain of the results obtained. 

i. Figure 2 shows the changes in pressure and flow rate (or velocity) at the bottom of 
the borehole (z = 0) in relation to time. In the first ~3.10 -2 sec, pressure and flow rate 
are established at certain constant values P = 46.105 N/m 2 + 9gL and Q = 72.10 -3 ma/sec, with 
both the front and the amplitude of these quantities being dependent on the properties of the 

~ed and the channel. After a time roughly equal t o  ~ T  ~  2 L  ..~77.10-z sec, a rarefaction wave 
C 

reflected from the free surface arrives. This wave is weakened considerably as a result of 
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Fig. 2. Change in pressure (P, N/m 2) and flow rate (Q, m3/ 
sec) at the bottom of the well (z = 0) and the change in 
pressure in the middle of the channel (z = L~2) in relation 
to time t, sec. 

Fig. 3. Relative change in velocity along channel v/vo = 
~(z) at different moments of time (numbers next to curves 
denote the time in seconds), z, m. 

dissipation during its movement up and down the channel. The arrival of the rarefaction wave 
establishes some new value of pressure at the bottom which is less than the initial hydro- 
static pressure. Here, in view of (i0), there is some increase in the flow rate (from 72 to 
102.10-3 m3/sec), i.e., an interesting phenomenon occurs in the dynamics of opening an 
anomalous-pressure bed whereby the arrival of a rarefaction wave from the initial shock causes 
additional gas to be sucked out of the bed. The intensity of this phenomenon depends on the 
viscosity of the drilling fluid, the geometry of the channel, and the properties of the 
reservoir, and it may prove decisive in subsequent transfer of gas from the bed. After a time 
of 2To, the next wave reflected from the surface arrives. It is even more weakened than the 
preceding wave, with diffuse fronts. The arrival of this wave causes a certain increase in 
pressure at the bottom and, thus, a decrease in the rate of flow from the bed. This process 
rapidly dies out, and after several seconds (~3-5) nearly steady-state flow has been estab- 
lished in the channel, with new values of pressure and flow rate at the bottom. 

Figure 2 also shows a curve depicting the change in pressure in the middle of the channel 
(z = L/2). It is apparent here that there is a gradual diffusion of the fronts and a reduc- 
tion in the amplitudes of the pressure pulses over time. The shift in the pressure curve 
over time is explained by the shift in the observation point along the channel by the amount 
z = L/2. We should note that the shape of the pressure pulse here differs markedly from the 
shape of the pressure pulse at the bottom. This agrees well with the physics of the phenome- 
non and experimental findings. 

2. Figure 3 shows the change in pressure along the channel for different moments of 
time. It is apparent how the velocity changes along the channel, in which there was initially 
a steady-state flow with a certain constant velocity corresponding to the flow rate (Qo = 
25-i0- Sm~sec). Since the velocity is different at different points of the channel radius, 
Fig. 3 also shows the change in velocity approximately in the middle of the channel (at r = 
(RI + R2) /2). The velocity change at other points of the channel cross section is similar in 
nature. 

The initial moment of bed opening is accompanied by a rapid increase in velocity in the 
bottom zone, while velocity remains equal to the initial value in most of the channel. There 
is then a gradual increase in velocity along the channel with parallel development of the front. 
At a time t = L/c, roughly the same velocity is established throughout the channel; this ve- 
locity at the open end of the pipe then begins to increase simultaneous with the formation of 
a reflected wave. The latter, increasingly diffuse and attenuating, travels toward the bottom. 
We should note that if the damping associated with the viscosity of the fluid and friction 
against the channel wall were absent, the initial velocity at the free surface would be 
doubled. In our formulation, however, processes connected with attenuation of the wave along 
the channel are considered, so that the increase in velocity at z = L is appreciably lower. 
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Fig. 4. Relative change 
in velocity (v/vo) at the 
top of the well (z = L) 
in relation to time (t, 
sec) for two values of bed 
permeability coefficient 
(kp, D). 

There is an additional change in flow rate and velocity with the arrival of the rarefac- 
ction wave at the bottom (at t > To) and a new perturbation is directed along the channel. 
The waves that are generated meet one another, are diffracted, and attenuate until a certain 
new constant steady-state flow is established along the entire length of the channel. This 
whole dynamic pattern depends on the geometry of the channel, the properties of the fluid, and 
the intensity of the perturbation -- which in turn depends on the properties of the bed. 

3. Figure 4 shows the relative change in velocity v/vo (or flow rate Q/Qo) in the top 
section of the pipe obtained from a solution of the problem relative rio time for two values 
of permeability coefficient (kp = ID and kp = 0.2D). It is apparent how bed permeability 
affects the velocity magnitude and front. Allowing for the effect of viscosity along the 
channel makes it possible to determine the attenuation dynamics as a function of the chosen 
parameters of our model. The curves in Fig. 4 are also interesting in that they represent 
values which might (and should) be measured in the top section of the channel and by which a 
judgment can be made as to the degree and force of the gas release. 

4. We should note one other important result obtained from the solution of the two- 
dimensional transient problem. In those parts of the channel where the flow is quasi- 
stationary at a given moment of time, i.e., where 8v/St and ~v/3z are small, the velocity pro- 
file is close in form to the profile corresponding to stationary flow. However, in those 
parts of the channel where the change in velocity along the channel is substantial (see Fig. 
3), the form of the profile changes appreciably. Here, there is a corresponding increase in 
the resistance to the flow in the pipe, which is consistent with the physics of the phenome- 
non. Thus, in our example (where kp = ID), the velocity in the region of the shock front in 
the boundary layer is 38% higher than it should be at the given flow rate in the steady-state 
case. 

Thus, with the appearance of a shock wave, there is a marked change in the flow profile 
and an increase in the degree of attenuation in the channel. 

In conclusion, we should note that the well hydrodynamic model obtained here, taking 
into account the non-Newtonian properties of drilling fluids, makes it possible to conduct 
broad numerical experiments to study the physical processes connected with well dynamics. 

NOTATION 

p, density of fluid; v, fluid velocity vector; P, pressure; ~', viscous shear stress 
tensor; g, acceleration due to gravity; T, viscous stress tensor; ~, dynamic viscosity coeffi- 
cient; 6, Kronecker symbol; D, shear rate tensor; v T, transformed velocity vector; S, in- 
variant of shear rate tensor; n, exponent of power rheological law; k, constant of power 
rheological law; c, speed of sound in an elastic fluid; kh, bulk modulus of elasticity; L, 
length of channel; R~, internal radius of annular space; R2, external radius of annular 
space; po, density of fluid at atmospheric pressure Po; Pb, pressure at the bottom of the 
borehole; Pi, initial pressure in the gas bed (at t<0); Q(t), flow rate of fluid; kp, per- 
meability of reservoir; p, dynamic viscosity coefficient of the gas; A, Ar, Az, differential 
operators; T, time step; hr, hz, spatial steps; K/, Az , finite-difference operators. 
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STABILITY OF A CONVECTIVE FLOW OF A VISCOUS FLUID BY THE METHOD 

OF LOCAL POTENTIAL 

V. V. Gorlei and V. A. Shenderovskii UDC 532.516 

A study is made of the stability of convective fluid flow caused by an external 
temperature gradient and heat sources uniformly distributed in the fluid. 

Interest has recently been increasing in the study of convective fluid flow caused by 
internal heat sources. The physical mechanism of heat liberation may vary in different 
cases:Joulian dissipation, radiant heat transfer, absorption of external radiation, etc. 
Together with this, the results in [i, 2] showed the destabilizing effect of viscosity non- 
uniformity. It is naturally of interest to investigate the stability of convective motion 
caused both by an external temperature gradient and internal heat liberation in considering 
the temperature dependence of viscosity. For this purpose, we will examine the convective 
flow of a viscous fluid in a long vertical layer bounded by parallel surfaces x = • main- 
tained at fixed temperatures T = • Let internal heat sources with a constant volume den- 
sity q be uniformly distributed throughout the volume of the liquid. We will assume that the 
viscosity of the liquid depends on the temperature according to the linear law. 

v = v0 (I -- sT), (1) 

where ~o is the maximum value of viscosity reached on the cold (T = --0) surface; a, tempera- 
ture coefficient. 

We will adopt the variational approach to study the stability of the convective flow -- 
specifically, the method of local potential. We will construct a functional having certain 
extreme properties and dependent on two types of variables [3]. In accordance with [4], we 
will proceed on the basis of linearized equations of a perturbed state [i] 

a.~ + ~ ,  au~ ap' _ - [  m m )  , 2 a~ a.~ an" ~ ,  (2) 
a--f- ~ = - -a~- ~ n ~--a-#- + - ~  u~ + ax ax F az ax ' 

~ i _ + _ [ - a u :  _ , a~, I aw ( ~ ~ " , , a ~  a~ ~:  a~" a~, + a~ au: (3) t u | . [ - ~ - - ~ - - ~ - = - - ~ - - + ~  -~-~-+--~F) '+a --~ - ~ - ~ ,  a~ a~  + - T f  a~ ax az +r ' ,  

aT' [ ,  aT . -  aT' ] ' ( ~ ~--~-~T', (4) 
O--T+G ~-~f-+u,-~-]=~T -~+ az 2 ] 

with the boundary conditions 

~(• T(• ~(•177 

Here the units of distance, time, velocity, temperature, andpressure are~ respectively: 
d; dZ/v0; g~qd~/2vopcp%; qd2/2pcp%; g~qd3/2cp%~ N = Qo/Q, w h e r e  Qo = g~Oda/v~; ~,  uz, p r o j e c t i o n s  o f  t h e  
p e r t u r b e d  v e l o c i t i e s  on  t h e  x and  z a x e s ;  p ' ,  T ' ,  p r e s s u r e  and  t e m p e r a t u r e  p e r t u r b a t i o n s ;  
and  Uz,  t h e i r  mean v a l u e s .  H a v i n g  p e r f o r m e d  a l l  m a t h e m a t i c a l  o p e r a t i o n s  s i m i l a r  t o  t h e  
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